Practice-related changes in neural activation patterns investigated via wavelet-based clustering analysis.

نویسندگان

  • Jinae Lee
  • Cheolwoo Park
  • Kara A Dyckman
  • Nicole A Lazar
  • Benjamin P Austin
  • Qingyang Li
  • Jennifer E McDowell
چکیده

OBJECTIVES To evaluate brain activation using functional magnetic resonance imaging (fMRI) and specifically, activation changes across time associated with practice-related cognitive control during eye movement tasks. EXPERIMENTAL DESIGN Participants were engaged in antisaccade performance (generating a glance away from a cue) while fMR images were acquired during two separate test sessions: (1) at pre-test before any exposure to the task and (2) at post-test, after 1 week of daily practice on antisaccades, prosaccades (glancing toward a target), or fixation (maintaining gaze on a target). PRINCIPAL OBSERVATIONS The three practice groups were compared across the two test sessions, and analyses were conducted via the application of a model-free clustering technique based on wavelet analysis. This series of procedures was developed to avoid analysis problems inherent in fMRI data and was composed of several steps: detrending, data aggregation, wavelet transform and thresholding, no trend test, principal component analysis (PCA), and K-means clustering. The main clustering algorithm was built in the wavelet domain to account for temporal correlation. We applied a no trend test based on wavelets to significantly reduce the high dimension of the data. We clustered the thresholded wavelet coefficients of the remaining voxels using PCA K-means clustering. CONCLUSION Over the series of analyses, we found that the antisaccade practice group was the only group to show decreased activation from pre-test to post-test in saccadic circuitry, particularly evident in supplementary eye field, frontal eye fields, superior parietal lobe, and cuneus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Wavelet Formants Speaker Identification Based System via Neural Network

In this paper Discrete wavelet Transform with logarithmic Power Spectrum Density (PSD) are combined for speaker formants extraction, to be used as evident classification features. For classification, Feed Forward Back Propagation Neural Network FFBNN method is proposed. The Discrete Wavelet formants Neural Network DWFNNT system works with excellent capability of features tracking even with 0dB ...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human brain mapping

دوره 34 9  شماره 

صفحات  -

تاریخ انتشار 2013